Can we explain AI with experiential? I say yes.
Museum of AI entrance

I’ll be at VentureBeat’s Transform AI conference July 10-11 in San Francisco. Let me know if you’re attending; would be great to meet. -Tracy It’s not always easy staying on the AI bandwagon. Claims of algorithmic bias abound and (mis)applications threaten people’s trust. Not everyone wants their face recognized or their driver’s license scanned. Developers […]

Read more
What we talk about when we talk about deciding: Notes from DAAG 2019

Since my work is about humans+AI deciding together, I attended DAAG 2019 in beautiful downtown Denver, exploring the “intersection of decision analysis and data science to take decision-making to the next level.” The intent was for decision analysts to better understand data science and “support data-centric decision-making” while data scientists could better “guide the use […]

Read more
Evaluate your decision process separately from your outcomes.
Building trust in the decision process

How we decide is no less important than the data we use to decide. People are recognizing this and creating innovative ways to blend what, why, and how into decision processes. 1. Apply behavioral science → Less cognitive bias McKinsey experts offer excellent insight into Behavioral science in business: Nudging, debiasing, and managing the irrational […]

Read more
What cancer decision trees can teach us.
prostatecancerdecision.org

Suppose you’ve gotten a cancer diagnosis. Would your business experience help you navigate the care pathway? Larry Neal describes how he applied his Decision Analysis skills to prostate treatment in Eight Lessons from a Decision Professional’s Cancer Decision. When a physician said Neal had a 30% chance of having cancer, but his analysis suggested 95-99%, […]

Read more
Machines Gone Wild! + Can Microlearning improve Data Science training?
boston-dynamics-spot-mini

1. Machines Gone Wild → Digital trust gapLast year I spoke with the CEO of a smallish healthcare firm. He had not embraced sophisticated analytics or machine-made decision making, with no comfort level for ‘what information he could believe’. He did, however, trust the CFO’s recommendations. Evidently, these sentiments are widely shared. — Tracy A […]

Read more